我找到的规律是:
对于第 k 个数,他一定是第它二进制下每一个 1 所代表的数个数的异或和。
帮我证明一下可以吗?
#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
#define int long long
namespace gtx{
// Fast IO
void read(int &x){
x = 0;int h = 1;char tmp;
do{tmp=getchar();if(tmp=='-')h*=-1;}while(!isdigit(tmp));
while(isdigit(tmp)) x*=10,x+=tmp-'0',tmp=getchar();
x*=h;
}
void read(char &x){do{x=getchar();}while(x==' '||x=='\n'||x=='\r');}
void write(char x){putchar(x);}
void write(int x){
if(x<0) putchar('-'),x=-x;int st[200]={0},tot=0;
do st[++tot]=x%10,x/=10; while(x);
while(tot){putchar(st[tot--]+'0');}
}
void write(int x,char y){write(x);write(y);}
#ifndef int
void read(long long &x){
x = 0;int h = 1;char tmp;
do{tmp=getchar();if(tmp=='-')h*=-1;}while(!isdigit(tmp));
while(isdigit(tmp)) x*=10,x+=tmp-'0',tmp=getchar();
x*=h;
}
void write(long long x){
if(x<0) putchar('-'),x=-x;int st[200]={0},tot=0;
do st[++tot]=x%10,x/=10; while(x);
while(tot){putchar(st[tot--]+'0');}
}
void write(long long x,char y){write(x);write(y);}
#endif
int y[60] = {1,10,34,68,130,514,1028,2050,4112,8194,16388
,32770,131074,262148,524290,1048592,2097154, 4194308
,8388610,16777472,33554434,67108868,134217730,268435472,536870914
,1073741828,2147483650,8589934594,17179869188,34359738370
};
signed main(){
int k;
cin >> k;
int u = 0;
int ans = 0;
while(k){
if(k&1){
ans^=y[u];
}
u++;
k>>=1;
}
write(ans);
return 0;
}
}
signed main(){
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
// ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
int T = 1;
// gtx::read(T);
while(T--) gtx::main();
return 0;
}