我同学拿了 60pts
的代码,感觉时间复杂度不太正常,求分析
#include <bits/stdc++.h>
#pragma GCC optimize(1)
#pragma GCC optimize(2)
#pragma GCC optimize(3, "Ofast", "inline")
#define pii pair<int, int>
#define Nxt puts("")
#define Spa putchar(32)
#define Pline puts("------------------------------")
namespace FastIO {
int write_top, read_f, read_x;
char read_char;
int write_st[20];
inline int read(int &a) {
read_char = getchar();
read_f = 1;
a = 0;
while (!isdigit(read_char)) {
if (read_char == '-')
read_f = -1;
read_char = getchar();
}
while (isdigit(read_char)) {
a = (a << 1) + (a << 3) + (read_char ^ 48);
read_char = getchar();
}
return a = a * read_f;
}
inline int read() {
read_char = getchar();
read_f = 1;
read_x = 0;
while (!isdigit(read_char)) {
if (read_char == '-')
read_f = -1;
read_char = getchar();
}
while (isdigit(read_char)) {
read_x = (read_x << 1) + (read_x << 3) + (read_char ^ 48);
read_char = getchar();
}
return read_x * read_f;
}
inline void write(int x) {
if (x < 0)
putchar('-'), x = -x;
write_top = 0;
do {
write_st[++write_top] = x % 10;
x /= 10;
} while (x);
while (write_top) putchar(write_st[write_top--] + '0');
return;
}
inline void tomax(int &a, int b) {
if (a < b)
a = b;
return;
}
inline void tomin(int &a, int b) {
if (a > b)
a = b;
return;
}
} // namespace FastIO
using namespace FastIO;
using namespace std;
const int N = 1e6 + 5;
int n, m, ans;
int a[N], b[N];
bool flag[N];
set<pii> st;
struct Segment_tree {
int mx[N << 2], pmx[N << 2];
int mi[N << 2], pmi[N << 2];
#define ls p << 1
#define rs p << 1 | 1
#define mid (l + r >> 1)
void pushup(int p) {
mx[p] = max(mx[ls], mx[rs]);
if (mx[p] == mx[ls])
pmx[p] = pmx[ls];
else
pmx[p] = pmx[rs];
mi[p] = min(mi[ls], mi[rs]);
if (mi[p] == mi[ls])
pmi[p] = pmi[ls];
else
pmi[p] = pmi[rs];
}
void build(int p, int l, int r) {
if (l == r) {
mx[p] = mi[p] = a[l];
pmx[p] = pmi[p] = l;
return;
}
build(ls, l, mid), build(rs, mid + 1, r);
pushup(p);
}
void change(int p, int l, int r, int x) {
if (l == r) {
mx[p] = mi[p] = (flag[l] ? b[l] : a[l]);
return;
}
if (mid >= x)
change(ls, l, mid, x);
else
change(rs, mid + 1, r, x);
pushup(p);
}
} Set;
bool vis(int mx, int mi) {
pii tmp = { mx, mi };
auto it = st.lower_bound(tmp);
if ((it == st.end()) || (*it != tmp)) {
st.insert(tmp);
return false;
}
return true;
}
void dfs(int p, int pre) {
if (p == m + 1)
return;
if (vis(Set.mx[1], Set.mi[1]))
return;
//翻最大值
int tmp = Set.pmx[1];
if (pre != tmp) {
if (flag[tmp] == 1 && b[tmp] > a[tmp]) { //此时 b 朝上,反过来最大值减小
flag[tmp] = 0;
Set.change(1, 1, n, tmp);
tomin(ans, Set.mx[1] - Set.mi[1]);
dfs(p + 1, tmp);
flag[tmp] = 1;
Set.change(1, 1, n, tmp);
} else if (flag[tmp] == 0 && a[tmp] > b[tmp]) { //此时 a 朝上,反过来最大值减小
flag[tmp] = 1;
Set.change(1, 1, n, tmp);
tomin(ans, Set.mx[1] - Set.mi[1]);
dfs(p + 1, tmp);
flag[tmp] = 0;
Set.change(1, 1, n, tmp);
}
}
//翻最小值
tmp = Set.pmi[1];
if (pre != tmp) {
if (flag[tmp] == 1 && b[tmp] < a[tmp]) { //此时 b 朝上,反过来最小值增大
flag[tmp] = 0;
Set.change(1, 1, n, tmp);
tomin(ans, Set.mx[1] - Set.mi[1]);
dfs(p + 1, tmp);
flag[tmp] = 1;
Set.change(1, 1, n, tmp);
} else if (flag[tmp] == 0 && a[tmp] < b[tmp]) { //此时 a 朝上,反过来最小值增大
flag[tmp] = 1;
Set.change(1, 1, n, tmp);
tomin(ans, Set.mx[1] - Set.mi[1]);
dfs(p + 1, tmp);
flag[tmp] = 0;
Set.change(1, 1, n, tmp);
}
}
}
signed main() {
read(n), read(m);
for (int i = 1; i <= n; i++) read(a[i]);
for (int i = 1; i <= n; i++) read(b[i]);
Set.build(1, 1, n);
ans = Set.mx[1] - Set.mi[1];
dfs(1, 0);
write(ans);
}